Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.638
Filter
1.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739436

ABSTRACT

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Subject(s)
Anti-Bacterial Agents , Endopeptidases , Glucans , Polymyxin B , Salmonella Phages , Endopeptidases/pharmacology , Endopeptidases/chemistry , Endopeptidases/metabolism , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Phages/genetics , Salmonella Phages/physiology , Salmonella Phages/chemistry , Glucans/chemistry , Glucans/pharmacology , Animals , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/virology , Mice , Salmonella typhimurium/virology , Salmonella typhimurium/drug effects , Bacteriophages/physiology , Bacteriophages/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/pharmacology , Viral Proteins/chemistry
2.
Biochem Biophys Res Commun ; 715: 149957, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38688057

ABSTRACT

Clostridioides difficile endolysin (Ecd09610) consists of an unknown domain at its N terminus, followed by two catalytic domains, a glucosaminidase domain and endopeptidase domain. X-ray structure and mutagenesis analyses of the Ecd09610 catalytic domain with glucosaminidase activity (Ecd09610CD53) were performed. Ecd09610CD53 was found to possess an α-bundle-like structure with nine helices, which is well conserved among GH73 family enzymes. The mutagenesis analysis based on X-ray structures showed that Glu405 and Asn470 were essential for enzymatic activity. Ecd09610CD53 may adopt a neighboring-group mechanism for a catalytic reaction in which Glu405 acted as an acid/base catalyst and Asn470 helped to stabilize the oxazolinium ion intermediate. Structural comparisons with the newly identified Clostridium perfringens autolysin catalytic domain (AcpCD) in the P1 form and a zymography analysis demonstrated that AcpCD was 15-fold more active than Ecd09610CD53. The strength of the glucosaminidase activity of the GH73 family appears to be dependent on the depth of the substrate-binding groove.


Subject(s)
Catalytic Domain , Clostridioides difficile , Endopeptidases , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Crystallography, X-Ray , Endopeptidases/chemistry , Endopeptidases/metabolism , Endopeptidases/genetics , Models, Molecular , Hexosaminidases/chemistry , Hexosaminidases/genetics , Hexosaminidases/metabolism , Mutagenesis , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutagenesis, Site-Directed , Protein Domains
3.
Comput Biol Med ; 174: 108397, 2024 May.
Article in English | MEDLINE | ID: mdl-38603896

ABSTRACT

The equilibrium of cellular protein levels is pivotal for maintaining normal physiological functions. USP5 belongs to the deubiquitination enzyme (DUBs) family, controlling protein degradation and preserving cellular protein homeostasis. Aberrant expression of USP5 is implicated in a variety of diseases, including cancer, neurodegenerative diseases, and inflammatory diseases. In this paper, a multi-level virtual screening (VS) approach was employed to target the zinc finger ubiquitin-binding domain (ZnF-UBD) of USP5, leading to the identification of a highly promising candidate compound 0456-0049. Molecular dynamics (MD) simulations were then employed to assess the stability of complex binding and predict hotspot residues in interactions. The results indicated that the candidate stably binds to the ZnF-UBD of USP5 through crucial interactions with residues ARG221, TRP209, GLY220, ASN207, TYR261, TYR259, and MET266. Binding free energy calculations, along with umbrella sampling (US) simulations, underscored a superior binding affinity of the candidate relative to known inhibitors. Moreover, US simulations revealed conformational changes of USP5 during ligand dissociation. These insights provide a valuable foundation for the development of novel inhibitors targeting USP5.


Subject(s)
Molecular Dynamics Simulation , Zinc Fingers , Humans , Endopeptidases/chemistry , Endopeptidases/metabolism , Protein Binding , Protein Domains
4.
World J Microbiol Biotechnol ; 40(6): 186, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683213

ABSTRACT

The ability of most opportunistic bacteria to form biofilms, coupled with antimicrobial resistance, hinder the efforts to control widespread infections, resulting in high risks of negative outcomes and economic costs. Endolysins are promising compounds that efficiently combat bacteria, including multidrug-resistant strains and biofilms, without a low probability of subsequent emergence of stable endolysin-resistant phenotypes. However, the details of antibiofilm effects of these enzymes are poorly understood. To elucidate the interactions of bacteriophage endolysins LysAm24, LysAp22, LysECD7, and LysSi3 with bacterial films formed by Gram-negative species, we estimated their composition and assessed the endolysins' effects on the most abundant exopolymers in vitro. The obtained data suggests a pronounced efficiency of these lysins against biofilms with high (Klebsiella pneumoniae) and low (Acinetobacter baumannii) matrix contents, or dual-species biofilms, resulting in at least a twofold loss of the biomass. These peptidoglycan hydrolases interacted diversely with protective compounds of biofilms such as extracellular DNA and polyanionic carbohydrates, indicating a spectrum of biofilm-disrupting effects for bacteriolytic phage enzymes. Specifically, we detected disruption of acid exopolysaccharides by LysAp22, strong DNA-binding capacity of LysAm24, both of these interactions for LysECD7, and neither of them for LysSi3.


Subject(s)
Bacteriophages , Biofilms , Endopeptidases , Biofilms/drug effects , Biofilms/growth & development , Endopeptidases/metabolism , Endopeptidases/pharmacology , Endopeptidases/chemistry , Bacteriophages/enzymology , Acinetobacter baumannii/drug effects , Klebsiella pneumoniae/drug effects , Viral Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/chemistry
5.
mBio ; 15(4): e0006924, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38470268

ABSTRACT

Streptococcus pneumoniae (Spn), a Gram-positive bacterium, is responsible for causing a wide variety of invasive infections. The emergence of multi-drug antibiotic resistance has prompted the search for antimicrobial alternatives. Phage-derived peptidoglycan hydrolases, known as endolysins, are an attractive alternative. In this study, an endolysin active against Spn, designated SP-CHAP, was cloned, produced, purified, biochemically characterized, and evaluated for its antimicrobial properties. Cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domains are widely represented in bacteriophage endolysins but have never previously been reported for pneumococcal endolysins. Here, we characterize the first pneumococcal endolysin with a CHAP catalytic domain. SP-CHAP was antimicrobial against all Spn serovars tested, including capsular and capsule-free pneumococci, and it was found to be more active than the most widely studied pneumococcal endolysin, Cpl-1, while not affecting various oral or nasal commensal organisms tested. SP-CHAP was also effective in eradicating Spn biofilms at concentrations as low as 1.56 µg/mL. In addition, a Spn mouse nasopharyngeal colonization model was employed, which showed that SP-CHAP caused a significant reduction in Spn colony-forming units, even more than Cpl-1. These results indicate that SP-CHAP may represent a promising alternative to combating Spn infections. IMPORTANCE: Considering the high rates of pneumococcal resistance reported for several antibiotics, alternatives are urgently needed. In the present study, we report a Streptococcus pneumoniae-targeting endolysin with even greater activity than Cpl-1, the most characterized pneumococcal endolysin to date. We have employed a combination of biochemical and microbiological assays to assess the stability and lytic potential of SP-CHAP and demonstrate its efficacy on pneumococcal biofilms in vitro and in an in vivo mouse model of colonization. Our findings highlight the therapeutic potential of SP-CHAP as an antibiotic alternative to treat Streptococcus pneumoniae infections.


Subject(s)
Bacteriophages , Pneumococcal Infections , Animals , Mice , Peptide Hydrolases , Streptococcus pneumoniae , Cysteine , Histidine , Amidohydrolases , Endopeptidases/genetics , Endopeptidases/pharmacology , Endopeptidases/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology , Bacteriophages/genetics , Biofilms
6.
Arch Microbiol ; 206(4): 151, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467842

ABSTRACT

Salmonella Typhimurium, a zoonotic pathogen, causes systemic and localized infection. The emergence of drug-resistant S. Typhimurium has increased; treating bacterial infections remains challenging. Phage endolysins derived from phages have a broader spectrum of bacteriolysis and better bacteriolytic activity than phages, and are less likely to induce drug resistance than antibiotics. LysST-3, the endolysin of Salmonella phage ST-3, was chosen in our study for its high lytic activity, broad cleavage spectrum, excellent bioactivity, and moderate safety profile. LysST-3 is a promising antimicrobial agent for inhibiting the development of drug resistance in Salmonella. The aim of this study is to investigate the molecular characteristics of LysST-3 through the prediction of key amino acid sites of LysST-3 and detection of its mutants' activity. We investigated its lytic effect on Salmonella and identified its key amino acid sites of interaction with substrate. LysST-3 may be a Ca2+, Mg2+ - dependent metalloenzyme. Its concave structure of the bottom "gripper" was found to be an important part of its amino acid active site. We identified its key sites (29P, 30T, 86D, 88 L, and 89 V) for substrate binding and activity using amino acid-targeted mutagenesis. Alterations in these sites did not affect protein secondary structure, but led to a significant reduction in the cleavage activity of the mutant proteins. Our study provides a basis for phage endolysin modification to target drug-resistant bacteria. Identifying the key amino acid site of the endolysin LysST-3 provides theoretical support for the functional modification of the endolysin and the development of subsequent effective therapeutic solutions.


Subject(s)
Bacteriophages , Salmonella Phages , Salmonella Phages/genetics , Amino Acids , Endopeptidases/genetics , Endopeptidases/pharmacology , Endopeptidases/chemistry , Bacteriophages/genetics , Bacteriophages/metabolism , Anti-Bacterial Agents/pharmacology
7.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38479791

ABSTRACT

Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs.


Subject(s)
Lactococcus lactis , Peptide Hydrolases , Animals , Peptide Hydrolases/metabolism , Caseins/metabolism , Molecular Weight , Endopeptidases/chemistry , Lactococcus lactis/metabolism , Amino Acids/metabolism
8.
Eur J Med Chem ; 269: 116329, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38508117

ABSTRACT

Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.


Subject(s)
Cathepsin B , Cathepsin B/metabolism , Endopeptidases/chemistry , Endopeptidases/metabolism , Lysosomes/chemistry , Lysosomes/metabolism
9.
Int J Biol Macromol ; 266(Pt 1): 131155, 2024 May.
Article in English | MEDLINE | ID: mdl-38547944

ABSTRACT

Here, we reported the process for the production of Pd/CuO/ZnO nanocomposite utilizing alkaline protease from Phalaris minor seed extract, which is a unique, effective biogenic approach. Alkaline protease performed a crucial part in the reduction, capping and stabilization of Pd/CuO/ZnO nanocomposites. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of Pd/CuO/ZnO nanocomposites. The notable performance of the synthesized nanocomposite as a photocatalyst and an antibacterial disinfectant was astonishing. The Pd/CuO/ZnO nanocrystals showed considerable photocatalytic activity by eliminating 99 % of the methylene blue (MB) in <30 min of exposure. After three test cycles, the nanocatalyst demonstrated exceptional reliability as a photocatalyst. The nanocomposite was also discovered to be an effective antibacterial agent, with zones of inhibitory activity for Staphylococcus aureus and Escherichia coli bacteria of 30(±0.2), 27(±0.3), 22(±0.2), and 21(±0.3) mm, respectively, in both light and dark conditions. Moreover, the Pd/CuO/ZnO nanocomposites showed strong antioxidant activity by efficiently scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The photocatalytic, antibacterial and antioxidative performance of Pd, CuO, ZnO, and CuO/ZnO were also assessed for the sake of comparison. This work shows that biogenic nanocomposites may be employed as a feasible alternative photocatalyst for the decomposition of dyes in waste water as well as a sustainable antibacterial agent.


Subject(s)
Anti-Bacterial Agents , Copper , Endopeptidases , Nanocomposites , Palladium , Staphylococcus aureus , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Nanocomposites/chemistry , Copper/chemistry , Catalysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Palladium/chemistry , Staphylococcus aureus/drug effects , Endopeptidases/chemistry , Escherichia coli/drug effects , Bacterial Proteins/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Photochemical Processes
10.
Curr Opin Microbiol ; 78: 102433, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350268

ABSTRACT

Our ability to control the growth of Gram-negative bacterial pathogens is challenged by rising antimicrobial resistance and requires new approaches. Endolysins are phage-derived enzymes that degrade peptidoglycan and therefore offer potential as antimicrobial agents. However, the outer membrane (OM) of Gram-negative bacteria impedes the access of externally applied endolysins to peptidoglycan. This review highlights recent advances in the discovery and characterization of natural endolysins that can breach the OM, as well as chemical and engineering approaches that increase antimicrobial efficacy of endolysins against Gram-negative pathogens.


Subject(s)
Anti-Infective Agents , Bacteriophages , Anti-Bacterial Agents/chemistry , Peptidoglycan/metabolism , Endopeptidases/genetics , Endopeptidases/pharmacology , Endopeptidases/chemistry , Anti-Infective Agents/metabolism , Gram-Negative Bacteria/metabolism , Bacteriophages/metabolism
11.
Bioorg Chem ; 145: 107222, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401359

ABSTRACT

Ubiquitination is a representative post-translational modification that tags target proteins with ubiquitin to induce protein degradation or modify their functions. Deubiquitinating enzymes (DUBs) play a crucial role in reversing this process by removing ubiquitin from target proteins. Among them, USP2a has emerged as a promising target for cancer therapy due to its oncogenic properties in various cancer types, but its inhibitors have been limited. In this study, our aim was to optimize the structure of ML364, a USP2a inhibitor, and synthesize a series of its derivatives to develop potent USP2a inhibitors. Compound 8v emerged as a potential USP2a inhibitor with lower cytotoxicity compared to ML364. Cellular assays demonstrated that compound 8v effectively reduced the levels of USP2a substrates and attenuated cancer cell growth. We confirmed its direct interaction with the catalytic domain of USP2a and its selective inhibitory activity against USP2a over other USP subfamily proteins (USP7, 8, or 15). In conclusion, compound 8v has been identified as a potent USP2a inhibitor with substantial potential for cancer therapy.


Subject(s)
Endopeptidases , Ubiquitin , Endopeptidases/chemistry , Proteolysis , Ubiquitin/metabolism , Ubiquitination
12.
Int J Biol Macromol ; 260(Pt 1): 129493, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224804

ABSTRACT

Endolysins are lytic enzymes produced by bacteriophages at the end of their lytic cycle and degrade the peptidoglycan layer of the bacterial cell wall. Thus, they have been extensively explored as a promising antibacterial agent to replace or supplement current antibiotics. Gram-negative bacteria, however, are prone to resist exogenous endolysins owing to their protective outer membrane. We previously engineered endolysin EC340, encoded by the Escherichia coli phage PBEC131, by substituting its seven amino acids and fusing an antimicrobial peptide cecropin A at its N-terminus. The engineered endolysin LNT113 exerted superior activity to its intrinsic form. This study investigated how cecropin A fusion facilitated the bactericidal activity of LNT113 toward Gram-negative bacteria. Cecropin A of LNT113 markedly increased the interaction with lipopolysaccharides, while the E. coli defective in the core oligosaccharide was less susceptible to endolysins, implicating the interaction between the core oligosaccharide and endolysins. In fact, E. coli with compromised lipid A construction was more vulnerable to LNT113 treatment, suggesting that the integrity of the lipid A layer was important to resist the internalization of LNT113 across the outer membrane. Cecropin A fusion further accelerated the inner membrane destabilization, thereby enabling LNT113 to deconstruct it promptly. Owing to the increased membrane permeability, LNT113 could inactivate some Gram-positive bacteria as well. This study demonstrates that cecropin A fusion is a feasible method to improve the membrane permeability of endolysins in both Gram-negative and Gram-positive bacteria.


Subject(s)
Antimicrobial Cationic Peptides , Escherichia coli , Lipid A , Escherichia coli/metabolism , Endopeptidases/chemistry , Gram-Negative Bacteria/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Positive Bacteria/metabolism , Oligosaccharides
13.
Bioprocess Biosyst Eng ; 47(3): 301-312, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37962644

ABSTRACT

In recent decades, the expansion of multi and extensively drug-resistant (MDR and XDR) bacteria has reached an alarming rate, causing serious health concerns. Infections caused by drug-resistant bacteria have been associated with morbidity and mortality, making tackling bacterial resistance an urgent and unmet challenge that needs to be addressed properly. Endolysins are phage-encoded enzymes that can specifically degrade the bacterial cell wall and lead to bacterial death. There is remarkable evidence that corroborates the unique ability of endolysins to rapidly digest the peptidoglycan particular bonds externally without the assistance of phage. Thus, their modulation in therapeutic approaches has opened new options for therapeutic applications in the fight against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology areas. The use of genetically engineered phage enzymes (EPE) promises to generate endolysin variants with unique properties for prophylactic and therapeutic applications. These approaches have gained momentum to accelerate basic as well as translational phage research and the potential development of therapeutics in the near future. This review will focus on the novel knowledge into EPE and demonstrate that EPE has far better performance than natural endolysins and phages in dealing with antibiotic-resistant infections. Therefore, it provides essential information for clinical trials involving EPE.


Subject(s)
Bacterial Infections , Bacteriophages , Humans , Bacteriophages/metabolism , Anti-Bacterial Agents/chemistry , Endopeptidases/chemistry , Bacterial Infections/drug therapy , Bacteria/metabolism , Peptidoglycan/metabolism , Peptidoglycan/therapeutic use
14.
Biotechnol J ; 19(1): e2300441, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010865

ABSTRACT

This study focused on the isolation and identification of a novel alkaline protease-producing strain from Lake Van, the largest soda lake on Earth. The objective was to purify, characterize, and investigate the potential application of protease in the detergent industry. Through a combination of classical and molecular methods, the most potent protease producer was identified as Exiguobacterium alkaliphilum VLP1. The purification process, involving ammonium sulfate precipitation, ultrafiltration, and anion exchange chromatography, resulted in a 45-fold purification with a yield of 6.4% and specific activity of 1169 U mg-1 protein. The enzyme exhibited a molecular weight of 69 kDa, a Km value of 0.4 mm, and a maximal velocity (Vmax ) value of 2000 U mg-1 . The optimum activity was observed at 40°C and potential of hydrogen (pH) 9, while the enzyme also exhibited remarkable stability in the ranges of 30-60°C and pH 9-12. Notably, this study represents the first report of an alkaline protease isolated and characterized from E. alkaliphilum. This study also highlighted the potential of the enzyme as a detergent additive, as it showed compatibility with commercial detergents and effectively removed blood and chocolate stains from fabrics.


Subject(s)
Detergents , Extremophiles , Detergents/chemistry , Extremophiles/metabolism , Endopeptidases/chemistry , Bacterial Proteins/metabolism , Peptide Hydrolases/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Temperature , Exiguobacterium
15.
Proteins ; 92(3): 427-431, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37921533

ABSTRACT

A 1.7 Å structure is presented for an active form of the virulence factor ScpB, the C5a peptidase from Streptococcus agalactiae. The previously reported structure of the ScpB active site mutant exhibited a large separation (~20 Å) between the catalytic His and Ser residues. Significant differences are observed in the catalytic domain between the current and mutant ScpB structures resulting with a high RMSDCα (4.6 Å). The fold of the active form of ScpB is nearly identical to ScpA (RMSDCα 0.2 Å), the C5a-peptidase from Streptococcus pyogenes. Both ScpA and ScpB have comparable activity against human C5a, indicating neither enzyme require host proteins for C5a-ase activity. These studies are a first step in resolving reported differences in the specificities of these enzymes.


Subject(s)
Endopeptidases , Streptococcus agalactiae , Humans , Streptococcus agalactiae/metabolism , Catalytic Domain , Endopeptidases/chemistry , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Catalysis , Streptococcus pyogenes
16.
Biotechnol Adv ; 70: 108304, 2024.
Article in English | MEDLINE | ID: mdl-38135131

ABSTRACT

Proteases have gained significant scientific and industrial interest due to their unique biocatalytic characteristics and broad-spectrum applications in different industries. The development of robust nanobiocatalytic systems by attaching proteases onto various nanostructured materials as fascinating and novel nanocarriers has demonstrated exceptional biocatalytic performance, substantial stability, and ease of recyclability over multiple reaction cycles under different chemical and physical conditions. Proteases immobilized on nanocarriers may be much more resistant to denaturation caused by extreme temperatures or pH values, detergents, organic solvents, and other protein denaturants than free enzymes. Immobilized proteases may present a lower inhibition. The use of non-porous materials in the immobilization prevents diffusion and steric hindrances during the binding of the substrate to the active sites of enzymes compared to immobilization onto porous materials; when using very large or solid substrates, orientation of the enzyme must always be adequate. The advantages and problems of the immobilization of proteases on nanoparticles are discussed in this review. The continuous and batch reactor operations of nanocarrier-immobilized proteases have been successfully investigated for a variety of applications in the leather, detergent, biomedical, food, and pharmaceutical industries. Information about immobilized proteases on various nanocarriers and nanomaterials has been systematically compiled here. Furthermore, different industrial applications of immobilized proteases have also been highlighted in this review.


Subject(s)
Nanostructures , Peptide Hydrolases , Peptide Hydrolases/metabolism , Enzymes, Immobilized/chemistry , Endopeptidases/chemistry , Biocatalysis
17.
Int J Biol Macromol ; 253(Pt 5): 127244, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37806416

ABSTRACT

Bromelains are cysteine peptidases with endopeptidase action (a subfamily of papains), obtained from different parts of vegetable belonging to the Bromeliaceae family. They have some intrinsic medical activity, but this review is focused on their application (individually or mixed with other proteases) to produce bioactive peptides. When compared to other proteases, perhaps due to the fact that they are commercialized as an extract containing several proteases, the hydrolysates produced by this enzyme tends to have higher bioactivities than other common proteases. The peptides and the intensity of their final properties depend on the substrate protein and reaction conditions, being the degree of hydrolysis a determining parameter (but not always positive or negative). The produced peptides may have diverse activities such as antioxidant, antitumoral, antihypertensive or antimicrobial ones, among others or they may be utilized to improve the organoleptic properties of foods and feeds. Evolution of the use of this enzyme in this application is proposed to be based on a more intense direct application of Bromeliaceae extract, without the cost associated to enzyme purification, and the use of immobilized biocatalysts of the enzyme by simplifying the enzyme recovery and reuse, and also making the sequential hydrolysis using diverse proteases possible.


Subject(s)
Bromelains , Peptides , Hydrolysis , Bromelains/chemistry , Peptides/chemistry , Peptide Hydrolases/metabolism , Endopeptidases/chemistry , Protein Hydrolysates/chemistry
18.
J Virol ; 97(10): e0111523, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796122

ABSTRACT

IMPORTANCE: Of the flaviviruses, only CSFV and bovine viral diarrhea virus express Npro as the non-structural protein which is not essential for viral replication but functions to dampen host innate immunity. We have deciphered a novel mechanism with which CSFV uses to evade the host antiviral immunity by the N-terminal domain of its Npro to facilitate proteasomal degradation of Sp1 with subsequent reduction of HDAC1 and ISG15 expression. This is distinct from earlier findings involving Npro-mediated IRF3 degradation via the C-terminal domain. This study provides insights for further studies on how HDAC1 plays its role in antiviral immunity, and if and how other viral proteins, such as the core protein of CSFV, the nucleocapsid protein of porcine epidemic diarrhea virus, or even other coronaviruses, exert antiviral immune responses via the Sp1-HDAC1 axis. Such research may lead to a deeper understanding of viral immune evasion strategies as part of their pathogenetic mechanisms.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Endopeptidases , Histone Deacetylase 1 , Immunity, Innate , Proteasome Endopeptidase Complex , Sp1 Transcription Factor , Viral Proteins , Animals , Classical Swine Fever/immunology , Classical Swine Fever/metabolism , Classical Swine Fever/virology , Classical Swine Fever Virus/enzymology , Classical Swine Fever Virus/immunology , Classical Swine Fever Virus/metabolism , Classical Swine Fever Virus/pathogenicity , Endopeptidases/chemistry , Endopeptidases/metabolism , Histone Deacetylase 1/biosynthesis , Histone Deacetylase 1/metabolism , Interferon Regulatory Factor-3 , Nucleocapsid Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Sp1 Transcription Factor/metabolism , Swine/virology , Viral Core Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Ubiquitins/metabolism , Cytokines/metabolism , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/metabolism , Protein Domains
19.
Biotechnol Adv ; 69: 108250, 2023 12.
Article in English | MEDLINE | ID: mdl-37678419

ABSTRACT

Endolysins are bacteriophage-encoded enzymes that can specifically degrade the peptidoglycan layer of bacterial cell wall, making them an attractive tool for the development of novel antibacterial agents. The use of genetic engineering techniques for the production and modification of endolysins offers the opportunity to customize their properties and activity against specific bacterial targets, paving the way for the development of personalized therapies for bacterial infections. Gram-negative bacteria possess an outer membrane that can hinder the action of recombinantly produced endolysins. However, certain endolysins are capable of crossing the outer membrane by virtue of segments that share properties resembling those of cationic peptides. These regions increase the affinity of the endolysin towards the bacterial surface and assist in the permeabilization of the membrane. In order to improve the bactericidal effectiveness of endolysins, approaches have been implemented to increase their net charge, including the development of Artilysins containing positively charged amino acids at one end. At present, there are no specific guidelines outlining the steps for implementing these modifications. There is an ongoing debate surrounding the optimal location of positive charge, the need for a linker region, and the specific amino acid composition of peptides for modifying endolysins. The aim of this study is to provide clarity on these topics by analyzing and comparing the most effective modifications found in previous literature.


Subject(s)
Bacteriophages , Endopeptidases , Endopeptidases/chemistry , Anti-Bacterial Agents/metabolism , Bacteria/metabolism , Bacteriophages/metabolism , Peptides/metabolism
20.
Methods Enzymol ; 686: 125-141, 2023.
Article in English | MEDLINE | ID: mdl-37532397

ABSTRACT

The tobacco etch virus (TEV) protease is widely used in in vitro and in vivo approaches for the removal of affinity tags from fusion proteins or the generation of proteins with a desired N-terminal amino acid. Processing of fusion proteins by the TEV protease can either be achieved by encoding the TEV protease and its recognition site on one construct (self-cleavage) or on two different constructs (co-expression). Here, we compare the efficiency of the self-splitting approach to the co-expression approach.


Subject(s)
Endopeptidases , Viral Proteins , Amino Acid Sequence , Endopeptidases/genetics , Endopeptidases/chemistry , Viral Proteins/metabolism , Recombinant Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...